VIRTUAL NODE IMPROVES LONG-TERM TRAFFIC PREDICTION

MIT-UF-NEU Summer Research 2024

Xiaoyang Cao, Tsinghua University

Supervisor(s):

Dingyi Zhuang

ST-GNNs for Traffic Prediction

1 Introduction

Traffic Prediction: Predicting future traffic conditions such as traffic flow and speed from historical traffic data.

- **Spatial Dependency:** Traffic conditions at one location are influenced by conditions at neighboring locations.
- **Temporal Dependency:** Traffic conditions at the current time are influenced by conditions from previous times.

Long-term Traffic Prediction: Time span exceeds one hour (Wang, Su, and Ding 2020).

Spatial Temporal Graph Neural Networks (ST-GNNs): Simultaneously managing spatio-temporal dependencies by considering time-varying graph structures.

Over-squashing in GNNs

Massachusetts Institute of Technology

1 Introduction

• Message-passing in GNN: GNNs operate by recursively aggregating and updating neighboring node features.

$$h_{v}^{(t)} = \mathsf{UPDATE}^{(t)}\left(h_{v}^{(t-1)}, \mathsf{AGG}^{(t)}\left(\left\{h_{u}^{(t-1)} \mid u \in \mathcal{N}(v)\right\}\right)\right) \tag{1}$$

 $\mathcal{N}(v)$ is the set of neighboring nodes of node v.

• Bottleneck of GNNs: information from a node's exponentially-growing receptive field is compressed into a fixed-size vector.

Over-squashing in GNNs

Massachusetts Institute of Technology

1 Introduction

• Over-squashing (Alon and Yahav 2021): Information from distant nodes is overly compressed, reducing the accuracy of **long-term** forecasting.

• A Transportation Example: An accident occurring at the westernmost point of a road network needs to propagate through multiple intermediate points to reach the easternmost point.

Virtual Node

1 Introduction

Virtual Node: Virtual nodes are connected to all real nodes in the network, acting as intermediary hubs facilitating information aggregation across the entire graph.

- Mitigating over-squashing
- Improving long-term prediction accuracy
- Providing model explainability

General Framework

2 Methodology

Adjacency Matrix:

- **Distance-based**: Leaverage geographical information.
- Adaptive: task-specific learning.
- **Semi-adaptive**: Integrate distance-based and adaptive matrix.

Distance-based Adjacency Matrix

2 Methodology

• d_{ii} is the distance between nodes i and j. Smaller distance indicates stronger connection.

$$\mathbf{A}_{\mathsf{dist}, \; \mathsf{ij}} = \begin{cases} \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right) & \mathsf{if} \; \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right) \ge r \\ 0 & \mathsf{otherwise} \end{cases} \tag{2}$$

Adaptive Adjacency Matrix

2 Methodology

9/21

• Consturcting anti-symmetric matrix for uni-directional connections (Wu et al. 2020):

$$\mathbf{A}_{\mathsf{adapt}} = \mathsf{ReLU}(\mathbf{E}_1 \cdot \mathbf{E}_2^T - \mathbf{E}_2 \cdot \mathbf{E}_1^T) \tag{3}$$

• $\mathbf{E}_1, \mathbf{E}_2 \in \mathbb{R}^{(|\mathcal{V}|+n_v)\times d}$ are learnable node embedding matrices. $|\mathcal{V}|$ is the number of real nodes, and n_v is the number of virtual nodes.

Semi-adaptive Adjacency Matrix

2 Methodology

• Concatenating A_{dist} and A_{adapt}

$$\mathbf{A}_{\mathsf{semi}} = egin{bmatrix} \mathbf{A}_{\mathsf{dist}} & \mathbf{A}_{\mathsf{adapt,real_to_virtual}} \ \mathbf{A}_{\mathsf{adapt,virtual_to_real}} & \mathbf{A}_{\mathsf{adapt,virtual_nodes}} \end{bmatrix}$$

Dataset

3 Experiment

The dataset used for this research is sourced from the San Diego (SD) subdataset in the LargeST benchmark dataset (Liu et al. 2024).

Attribute	Value		
Nodes	716		
Edges	17,319		
Average Degree	24.2		
Density	0.0338		
Time Range	01/01/2017 - 12/31/2021		
Sampling Rate	5 minutes		
Time Frames	525,888		
Data Points	0.38B		

Figure: Visualization of Sensor Locations in San Diego

Key Research Questions

- Q1: Do virtual node alleviate over-squashing?
- Q2: Do virtual node improve long-term traffic prediction?
- Q3: How does virtual node provide explainability?

Influence score

3 Experiment

Q1: Do virtual node alleviate over-squashing?

Definition: Layer-wise Sensitivity

Layer-wise Sensitivity^a is defined as the L_1 norm of the gradient of the k-th layer's embedding of node x $h_x^{(k)}$ with respect to the input layer's embedding of node y $h_y^{(0)}$:

Sensitivity_k
$$(x, y) = \left\| \frac{\partial h_x^{(k)}}{\partial h_y^{(0)}} \right\|_1$$

^aKevulu Xu et al. (2018). "Representation learning on graphs with jumping knowledge networks". In: International conference on machine learning. PMLR. pp. 5453-5462.

Influence score:

$$I_k(x_1, x_2) = \frac{\mathsf{Sensitivity}_k(x_1, x_2) + \mathsf{Sensitivity}_k(x_2, x_1)}{2}$$

 x_1 , x_2 are the two geographically most distant nodes in the graph.

• A **lower** influence score indicates a **more severe** over-squashing problem 14/21

Impact of Virtual Nodes on Over-squashing

Massachusetts Institute of Technology

3 Experiment

 Adding virtual node increases influence score as the number of layers increases.

Long-term Performance

3 Experiment

Q2: Do virtual node improve long-term traffic prediction?

Table: Improvement in Traffic Prediction Accuracy with and without Virtual Nodes

Model	MAE (%)		MAPE (%)		RMSE (%)	
	Overall	Long-term	Overall	Long-term	Overall	Long-term
STGCN	3.22%	3.71%	3.31%	4.23%	4.81%	6.13%
ASTGCN	2.01%	2.13%	4.67%	3.14%	0.789%	1.09%
GWNET	3.32%	3.98%	2.43%	5.37 %	3.19%	4.91%

- **Overall**: average values in 5-100 minutes; **Long-term**: average values in 75-100 minutes.
 - Virtual nodes enhance traffic prediction accuracy, especially in **long-term prediction**.

Long-term Performance

Visualization

3 Experiment

Q3: How does virtual node provide explainability?

Figure: Heatmap of real to virtual adjacency matrix

18/21 • Weights at road intersections are higher.

Future Plan

- Tested models:
 - Distance-based adjacency matrix: STGCN, ASTGCN
 - Distance-based + adaptive adjacency matrix: GWNET
- Next step: Test on models with fully adaptive adjacency matrix, such as AGCRN.
- Target journal: Transportation Research Part C: Emerging Technologies

Selected References

- Alon, Uri and Eran Yahav (2021). "On the Bottleneck of Graph Neural Networks and its Practical Implications". In: *International Conference on Learning Representations*.
- Liu, Xu et al. (2024). "Largest: A benchmark dataset for large-scale traffic forecasting". In: *Advances in Neural Information Processing Systems* 36.
- Wang, Zhumei, Xing Su, and Zhiming Ding (2020). "Long-term traffic prediction based on lstm encoder-decoder architecture". In: *IEEE Transactions on Intelligent Transportation Systems* 22.10, pp. 6561–6571.
- Wu, Zonghan et al. (2020). "Connecting the dots: Multivariate time series forecasting with graph neural networks". In: *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 753–763.
- Xu, Keyulu et al. (2018). "Representation learning on graphs with jumping knowledge networks". In: *International conference on machine learning*. PMLR, pp. 5453–5462.

